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ABSTRACT 

An analysis of an extensive sample of the world’s data has been per- 

formed to test the hypothesis of radial scaling. We have studied the inclusive 

reactions : 

to determine the behavior of the invariant cross section as a function of pI , 

XR = EfiELax, the radial scaling variable, and s. The data cover a range 

in pI from 0.25 to -6.0 GeV/c and a range in fi from 3.0 GeV to 63 GeV. 

1) For small xR and all available p 1 
the single particle inclusive cross 

sections for the reactions: 

p + p - Kz + anything 

P 

to a good approximation scale for all &. even down to the kinematic 

threshold. 

2) For large xR, the single particle inclusive cross sections for 

increasing fi show a rapid approach to the scaling limit from above. In 
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these cases the scaling limit is always approached by 6 = 10 GeV. Thus 

data for all particles to a good approximation exhibit radial scaling at all 

available pI and XR over ISR energy range. 

A.comparison of radial scaling with Feynman scaling is given. It is’ 

shown that in the Feynman case the cross sections for small x,, 

txll = P,;/P* mar) approach their scaling limit from below, and that the 

approach to the scaling limit is slower than is exhibited for the case of 

small XR. 

The systematic differences among the inclusive cross sections of 

various particles are discussed in the range of 6 where radial scaling has 

been shown to be valid. In particular, the p, and XR distributions of 

E daidp3 are examined. 
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1. INTRODUCTION 

In a separate paper we have presented data on inclusive no 

prod&ion from pp collisions at the Fermi National Accelerator 

Laboratory. 1 Here we present an analysis and interpretation of 

these KO data. In addition we examine other single particle 

inclusive cross sections to search for systematics in their 

behavior. 

To study the single particle inclusive experiments. a set 

of variables should be chosen such that the single particle 

inclusive cross section displays the simplest behavior with respect 

to energy, Pi. center of momentum frame angle, etc. It is natural 

to choose a parameterization of the inclusive cross section:which 

is meaningful in the exclusive limit. 2 We therefore define the 

scaling variable: . 54 = c 1 ?--* ma% 
where E* = the energy of the detected particle in the center of 

momentum frame, and Earnax '= the maximum energy kinematically 

available to the detected particle in the c.o.m. frame. The 

range of xR is 0 < xR i 1 for all pI, and the case Y$ = 1 COT- 

responds to the exclusive limit. Since this variable is indepsn- 

dent of the center of momentum angle and depends on only the 

radial distance from the kinematic boundary, we have called it 

the "radial' scaling variable. 

Using this variable xR, the proton-proton single particle 

inclusive cross section can be expressed as a function of three 

. 
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variables s; PI and xR' 

E$ = f(=. PA’ xR’ 

where s is the square of the total c.o.m. energy. In this work 

we study whether the invariant cross section at sufficiently 

high energy scales, that is, becomes independent of s. It is 

shown that this scaling is reached at a lower s than obtained 

with the use of the Feyman variable x,, . 

In an analysis of a single no inclusive experiment in p-p 

collisions3 It has been shown that for sufficiently high & 

(J; : 10 GeV) there is radial scaling: 

Eaa I 
dp3 

f(Pl. XR). 

This scaling is observed for 0.3 GeV/c i p1 2 3.0 GeV/c and for 

10 GeV 2 & 2 27 GeV and for center of mass angle 20° I0* I 150°. 

It is therefore interesting to test this new form of scaling over 

as wide a kinematic range as possibl; for other particles produced 

in p-p collisions. We shall discuss the reactions: 

3 
P+P* Kf + anything. 

P 

In Section II, the variable xR is discussed and it is compared 

with the Feynman scaling variable x,, . Section III is a discussion 

of the method of data analysis. A comparison of radial scaling 

with Feyman scaling is given in Section IV. Section V is a 

presentation of the various systematic differences among single 

particle inclusive cross sections for various particles in p-p 
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collisions in the radial scaling region. A sunvnary is given in 

Section VI. 

II. THE xR VARIABLE 

in an analysis of single n 0 inclusive production, 3 it has 

been shown that the s-dependence and the laboratory angular 

dependence of the invariant cross section could be succinctly 

described by writing the invariant cross section in terms Of 

the transverse momentum p1 and the variable xR. This variable 

may be written in Lorentz invariant form as: 

M2 .2 
1-x +c 

l 

=E= 
S S 

I 

XR Ef (4) 
max fi 

2 

l- &+g 

S 6 

where Mx = the invariant mass of the unspecified particle(s) 

(undetected), Gx = the minimum possible MX value, Xc = the 

rest mass of the detected particle and s = the square of the 

total energy in the center of momentum frame. The variable xR 

has been used by several authors and was probably first used by 

Kinoshita and Noda 4 HI 1971 although apparently it had been 

discussed by Feynmen5 in 1969. 

The maximm energy (E* max) kinematically available to the 

detected particle c in the inclusive reactionr 

p + p + c + anything 
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is determined by s, the square of the total energy in the c.o.m. 

frame, by the lilas.6 MC of the detected particle C, and by fix, the 

minimum mass of the undetected particle system consistent with 

quantum number conservation (charge, strangeness, baryon number, 

etc.). For a single particle inclusive reaction this minimum 

value of MX corresponds to the exclusive limit. A compilation 

of the minimum value of *fx and the exclusive limit reactions is 

given in Table I. We can express Efmax as: 

E*max = 
S-M -2+b12 

x c 

2/z 
(5) 

Since xR is a ratio of total energies, the value of xR at the 

particle c production threshold is 1, and for fixed, finite 
l 

E , xR = 0 only at infinite s. 

The radial scaling variable xR is distinguished from the 

Feynman6variable x,~ = P,,*/Pemax = 2p,; l //5 in that the detected 

TABLE I 

Inclusive Reaction Exclusive Reaction 
I 3x 

+ 
p+p*-rr + anything 

p+p+n- + anything 

p+p*rn" + anything 

p + p + K+ + anything 

p+p+lC- + anything 

P+P*P + anything 

p + p -t p + anything 

p+p+p+n+n + 

. 
P+P+P+P+n 

+ + "7. 

p+p*p+p+n" 

p+p+AO +p+K+ 

p+p+p+p+x++u- 

P+P*P+P 

P+P- P+P+P+P 

1.88 GeV/c2 

2.02 GeV/c2 

1.88 GeV/c2 

2.05 GeV/c2 

2.37 GeV/c2 

0.94 GeV/c' 

2.81 GeV/c2 
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particle's total energy is scaled by its maximum value, rather 

than its longitudinal momentum by the maximum momentum. The 

use of only the longitudinal momentum component means that the 

variable x,,is not related to the location of the kinematic 

boundary at finite pI. One might, therefore, expect the invar- 

iant cross section to have an s-dependence for fixed pL due 

entirely to kinematic effects. In particular one would expect 

E do/dp3 for fixed pI and x,, = 0 to rise with increasing & 

as the point in the x,, , xL plane at which the measurement is 

being made moves further'from the kinematic boundary. Therefore, 

in the region of center of mass angle 8. = n/2, x,, is clearly 

not the best variable for studying scaling-and the systematic6 

of single particle inclusive production. Other frequently used 

variables such as rapidity: 

Y= = l/2 1" , (6) 

and xL: 

also and not related to the location of the kinematic 

boundary, and suffer the same defects. On the other hand the 

expression of the invariant cross section in terms of the variablea 

xR and pc allows the s-dependence of the CXJSS section to be studied ) 

at a fixed distance from the kinematic boundary. 

It is instructive to contrast radial scaling with Feynman 

scaling by examining the methods by which single particle inclusive 

measurements are made. In both cases, consider the invariant crams 
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section at a fixed pL and compare, for example, x,, = 0.3 to 

XR = 0.3. Figure 1 shows the curves as a function of 8 along 

which these measurements are made in both cases. This plot is 

made in the xL = 2pL//; and x,, = 2 p,, l /fZ plane. In the limit 

of s * m we see that radial scaling and Feynman scaling are 

identical hypotheses: 

E 2 3 f(Pi. XR) = f(PL, XJ (8) 

However, the finite s behavior is quite different in the two 

cases. In the case of Feynman scaling the point at which the 

measurement is made moves away from the kinematic boundary. A 

large s-dependent increase in the cross section due to increasing 

phase space is thereby introduced. On the other hand measurements 

at fixed xR require that the fractional distance to the kinematic 

boundary remain constant. In this way, it appears that the s- 

dependence of the dynamics may be more directly probed. 

Another property of the variable xR which distinguishes it 

from the Feynman variable x,, is its totally different s-threshold 

behavior. The s-threshold for a given value of pI is defined as 

the minimum value of s which can have t5e specified value of 

'R Or x~~~- 
.For the xR variable, this threshold is given by: 

=T 
= h + fi ’ - ~~~~ 2[T2 + T 

x 
(ii 2 - n,%’ 

x (9) 

where: T = 

Hence for the limit xR = 0, the s-threshold sT is = _, for a fFxed 

value of pl. The limit XR = 1 (the exclusive limit) corresponds 
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to a finite sT for finite pL. Comparing the s-threshold values 

at these two extreme values of xR = 0 and xR = 1 with the 

corresponding s-thresholds for the same extremes for x,,, there 

are very great differences. The s-threshold for the Feynman 

variable x,, is determined by the kinematic boundary, 50 letting 
l 

p max be the maximum possible momentum. of the particle in 

the c.0.m. then, 

l PI 

p IraY. = 

$ 

Jl 2 =T 
-XII 

(10) 

Hence in the limit x,, = 0, and pL fixed, 

The limit x = 

GT = 2p, (11) 

II 
1 corresponds to & = - for fixed pL. Thus for 

a given x,, or xR and fixed pL the threshold energy in the two 

cases is quite different. 

We wish to compare the s-dependence of the invariant cross 

section for fixed xR, pl with the invariant cross section for the 

same numerical value of xII at the same value of pL. In this way 

the two cross sections will approach the same asymptotic limit. 

We are interested in this approach to the asymptotic limit. 

There is clearly some point at which the thresholds OCC"r at 

the same energy JsT . This happens for: ("sing high energy 

approximations) 

2PL 2Pl 

q=m (12) 
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i.e., x = x R 
= x = I_. 

" /I 

Hence for xR = x 1 
II g E' 

the threshold for the radial variable 

xR lies at a higher & than the threshold for the Feynman variable 

x II ' whereas the opposite is true for XR = x,, > 1. 
f3 

Finally it should be emphasized that E do/dp 3. 1s always 

finite at the s-threshold for fixed xR and pI. but is zero (exclud- 

ing p-p elastic scattering) at the s-threshold for fixed x,, and 

PI- This means that the cross section for fixed x,,, pL must 

rise over some range in & due to purely kinematic effects. This 

s-dependence seems to be a major cause for the observed fixed x If ' 

pi behavior of inclusive cross sections. 

III. THE DATA ANALYSIS 

A. The Object of the Data Analysis: 

The object of the data analysis is to convert the data from 

each experiment into a table of invariant cross sections as a 

function of & for given values of pI and xR or pL and x,, . We 

divided the range of xR into 10 bins of 0.1 units, ranging from 

0.0 to 1.0 and the pI range from 0.125 G&/c to 10.125 GeV/c was 

divided into 40 bins of 0.25 GeV/c. The variable & was not binned, 

and therefore each value of G of a given experiment provided a 

unique entry into the compilation. 

Since a given datum generally did not fall at exactly the 

middle of the pI, xR or x,, bin, a small adjustment was performed 
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to move it to the center of the bin. This procedure is described 

in more detail later. Only statistical errors were used to denote 

the experimental uncertainty of,each data point. The experiment- 

to-experiment systematic errors were estimated from the consistency 

of the data set to be 2 2 158, but in many cases they could not 

be reliably determined, and were therefore not included. 

B. Criteria for Choice of Data: 

The requirement for including data in the compilation was 

the existence of a published table of cross sections for the produc- 

tion process p + p - c + anything, c = no, X1 , or pf. I" only a 

few instances were fits to the data used to generate values of 

E do/dp3. These exceptions were made when there were no other 

data in the same kinematic range. A list of the data used is 

given in Table II. 

C. The Finite Binning Corrections: 

Each set of data was binned in 0.25 GeV/c units of pL and in 

0.1 units of xR or x,, and it was found that the variation of E s 
dp 

even for these small bins was sizable. Therefore, it was 

necessary to adjust the data to the center of each bin, both 

in pL, and in xR or x,, . The value of the invariant cross 

section for a given experiment entered into the compilation for 

a fixed pL and xR was computed by an expression of the form: 
-1 



- 12 - 

E do (plo, xRo, 61 
. . 

dp3 
= 3 (P,. XR, 

. . 
5) g (PA, Pi? f (x,. x,7 (13) 

where: PIO, XR 
0 

-.. I 
are the central values of the pL and XR bins; 

E 5 (~1, xR, s) is the cross sectidn averaged over the pl, xR 

bins weighted by its statistical error. 
A 

The functions f(x 7 
^ R' XR 

and g (pL, pLo) are the finite binning corrections in xR and pL 

respectively. They shift the data average:from the statistical 
,. . 

mean values xR and p1 to the centers of the xR and pL bins (to 

XRO, PI?. The functions f and g depend on the particle type, 
^ 

and g(pl, pIo) was also allowed to dep&d on xR. The explicit 
1 

functional forms of f(xR, xRo) and g(p,, pi01 were determined 

by performing a rough fit to the binned, uncorrected data. Since 

these corrections are typically : 30%. a rough determination 

of these functional forms was adequate to describe the data over 

one bin width. 

The form adapted for the f(iR, xRo) correcting function is 

given by: 
,. 

f (XR, XROl = 
(1 - XRO)" 

(14) 

(1 - a7 - XR) 

where the exponent n is a function of the detected particle 

type. 
1 

The function g(p,, pl") used is given by: 

* 
gfp,. Pro) = 

(iA2 + m21q 

(PLO2 + m21q 
(15) 

, 
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where the power q and the parameter m2 showed a slight dependence 

on xR but was roughly inilependent of particle species. 

Although the explicit determination of the various parameter8 

n. m 2, g was approximate, the resulting error in these corrections 

was small. It is estimated that the error in the parameter n is 

? 1, the error in g is ? 1 and the error in m 2 IS f 0.1 GeV2 giving 

rise to an error in the XR correcting function of: 

and in the pI correcting function of 

D. The Rebinning in x,,: 

The final stage of the data analysis was to compute the invari- 

ant cross section for fixed &, pL, with x,, replacing xR. This 

was performed on the compiled data for fixed xR, pL, by calculating 

for each table entry the corresponding value of x,, and using a 

small correction to shift the x,, binned data to the middle of 

the xl, bin. This small correction (z 30%) was performed by using 

the xR dependence of E do/dp3 to shift to the appropriate xR value 

coreesqonding to the middle of the x,, bin. 

IV. COXPARISON OF RADIAL SCALING HITH FEYNXAN SCALING 

b 
The invariant cross section for v , I?, and pf are presented 

in figures 2 through 8 for constant pr, xR and constant p~,x,,versus 

&. These graphs cover roughly 25% of the data compilation. The 
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qualitative features of this comparison between the radial scaling 

hypothesis and the Feyman scaling hypothesis for these single 

particle inclusive cross sections are given below. 

1) In the low x region (x 5 0.2) radial scaling is good 

to within the estimated f 158, experiment to experiment systematic 

errors, from the s-threshold to the highest energy available at 

the 1%. 'On the other hand, above the corresponding x,,energy threshold, 

there is a very large energy dependence of the cross sections. In this 

low x ,, region, the approach to the Feynman sc$ling limit is from 

below, and in the case of large p1 % 3.0 G&/c the Feynman scaling 

limit is not obtained even in the 1% energy range. 7.8 If one 

restricts the comparison of these two types of scaling to the fi 

region above the radial variable s-thr'eshold, one observes less 

difference. In the same range of &, the s-dependence of E do/dp3 

for fixed x,, is slightly greater than that for fixed xR, and the 

cross sectibn appears to rise to its asympotic limit at large fZ. 

Therefore in the low x (x, or x;; ) region, the primary breakdown,. 

in Feyman scaling is below the radial variable s-threshold. 

2) For xR > 0.20 there is a rapid approach to a radial 

scaling after fi passes above the x R threshold. Furthermore for 

fi z 10 GeV radial scaling appears to be achieved for all pL. 9 

The deviation from radial scaling at low fi is greater for larger 

values of XR. In all cases the radial scaling limit is approached 

\ 
from above for increasing 6. 

For x,, > 0.2, the approach to the Feymnan scaling limit is 

also from above. This is in contrast to the situation at low x,, 

where the approach to the scaling limit is from below. since for 
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a given point on the Peyrou plot x,, 2 x R, large x,, implies 

xt, = XR and therefore in this limit xR and x,, scaling are the 

*me. Because of this transition from an approach to scaling 

from bc!.>w at small x,, to an approach from above at larger x,, , 

there are values of x,, and pI where Feynman scaling is good at 

very low /; (% 5.0 GeV). + For example Feynman scaling for x , 

x 11 = 0.25 and pI = 0.75 GeV/c is good to within experimental 

systematic errors from /5 = 5 Gev up to & = 53 GeV. It appears 

that a kinematic threshold effect is superi&sed on a dynamically 

induced decreasing cross section. Thus the s-dependence of the 

cross sections, for fixed x II ' *pI and for fixed xR, pI, as they 

fall to their scaling limit are different. In the former case, 

kinematic boundary effects distort the behavior. A discussion 

of the various inclusive cross sections will now be given. 

Referring to figures 2 through 8 we see: 

A) T': (Figures 2 and 3) For xR = 0.05, radial scaling 

is good down to the radial scaling threshold as is evident from 

Figure 2a and 3a. Feyman scaling for x,, = 0.05 is evidently 

violated even for small pL and the invariant cross section for 

fixed x,, and pa is rising with increasing &'. For xR 2 0.20 

the radial scaling limit is always approached from above for increasing 

& and by roughly fi z 10 GeV the scaling limit has been attained 

for all p*. The approach to the Feynman scaling limit for x,, 
. 

> 0.2 shows a turn over. For small pL (: 1 GeV/c) the approach 

to the scaling limit is from above with increasing 6, but for 

larger p1 (: 1.25 G&/c) the approach to the scaling limit is 

from below. In all cases radial scaling appears to be goad for 
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G < 10 GeV, whereas Feynman scaling may be violated by a factor 

of ten from & x 27 to 53 GeV. 

8) 4: (Figure 4) For xR = 0.05 2 0.05, there is good 

evidence for radial scaling down to the radial scaling threshold. 

Feynnan scaling for x,, in the same range is again violated and 

the invariant cross section rises from below for increasing /5. 

For xR = 0.25 * . 05 radial scaling is good down to /; = 10 GeV for 

al1 PI. For x,, = 0.25 f .05 Feynman scaling over the same & 

region is violated by approximately a factor of 2 for pL = 1.25 

GeV/c and by a factor of 4 for pL = 2.25 GeV/c. Feynman scaling 

appears to hold for pI : 0.75 GeV/c. For xR > 0.35 radial scaling 

is good to within experinental errors for fi Z 10 GeV, whereas 

for x ,, 1 0.35 Feynman scaling is obeyed for only low pi. 

C) & (Figure 5 and 6) The Kf data show the same quali- 
k 

tative features as the no data. There is however a difference 

between K+ and K-. The K+ data for fixed ~~,,~,,appear to have 

somewhat less s-dependence than the corresponding K- data. A 

comparison of the two scaling hypotheses in the same range of 6 

for Kt shows a systematic s-dependence for fixed pI, x,, (especially 

for x-j, which is absent in the data for fixed xR. 

II) 2: (Figure 7) The data at xR = 0.05 ? 0.05 exhibits 

good radial scaling down to the radial scaling scthreshold, but 

for large pL = 3.75 G&/c the Feynman scaling hypothesis for 

x ,I = 0.05 is violated by a1mx.t an order of magnitude over the 

1% energy range, and appears to be approaching the scaling limit 

from below. For small pA (2 0.75 G&/c) Feynman scaling is 

approached from above. In general the violations of Feynman 
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scaling are less severe for protons than for any other particle. 

At low pL, high xR IL C-65) the radial scaling limit is approached 

from above. and as for the other particles,this approach to radial 

scaling is more pronounced for large rather than small xR. 

E) i: (Figure 8) Radial scaling for small xR 2 0.2 

appears to be satisfied for anti-protons down to the radial 

scaling s-threshold. For larger xR there are indications that 

the radial scaling limit is approached from above, although the 

data are incomplete. Feynman scaling is badly violated for 

anti-protons even at very high energies. For example at pL = 

= 0.05, the anti-proton invariant cross Section 1.25 GeV/c, x,, 

rises by roughly a factor of 2 for the /5 range from 30 GeV 

to 60 GeV. 

In conclusion. for single particle inclusive reactions use 

of the radial scaling variable xR leads to an earlier scaling 

of the invariant cxiss sections than uSe of the x variable. II 

Unlike the Feynman scaling limit, the radial scaling limit is 

always approached from above for increasing s and is reached 

by & '? 10 GeV. This is consistent with the s-dependence Of the 

total proton-proton cross section at low 6 ('Q 5 to 10 GeV). The 

Feynman scaling limit is approached either from below, from above, or 

is exact depending on the dominance of phase space effects, dynamic 

effects or the fortuitous cancellation of these two effects. At 

small x0 (-0.05 to 0.20) there are large violations of Feynman 

scaling due to large changes in the phase space suppression, which for 
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la=g* Pi (especially for p and K- data1 remain even at ISR energies. 

V. INCLUSIVE CROSS SECTIONS IN THE RADIAL SCALING REGION 

Since all single particle inclusive cross sections for fixed 

XR and pi appear to scale for energies & z 10 GeV, there are 

sufficient data to examine the systematic differences between 

particle species in this radial scaling region. 

TO illustrate the kinematic range in the radial scaling 

region, (J; z 10 GeV) covered by the compilation, normalized 

Peyrou plots for each particle type are presented in Figure 9. 

In these plots, x ,, = Zp,, l /& is plotted'against xI = ZpJ(ji 

for a given xR value of a given particle. It is seen that only in 

the case of no mesons (Figure 9c) is a wide range in x,,, x, for 

a given xR covered. 1 
For the other particles, most of the data 

for large x; are concentrated either in the foward direction, 

or near 9o". 

It is of particular interest to compare the dependence of 

E do/dp3 on pI for constant xR and on xR for constant pI. We 

make this comparison for each detected particle in the single 

particle inclusive reactions: z 
p.+ P * II , Kf, pf + anything. 

A) The pI dependence of E do/dp3 for constant xR is displayed 

in Figure 10 for each of the single particle inclusive reactions 

listed above. These graphs were generated by projecting on the 

pi axis all of the data in the particle compilation for a given 

constant value of XR. A separate point is plotted for each & 

value in the table above 10 GeV. Referring to these figures. it 

is noticed that the invariant cross section for PI < 1.5 GeV/c 
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for all particles becomes steeper for increasing pL as xR increaseS. 

Furthermore the slope of E do/dp3 versus pI at low pi decreases 

for increasing xR. This pL dependence of E do/dp' can be parameter- 

ized by the following universal form, applicable to all particlea 

and at all xR: 

E.%! A 

dp3 
I 

c 
2 - 

(161 

32 = constant (1 + $19 
m 

A minimum x2 fit was performed on the data to determine the values 

of the parameters A hb/GeV2), m2 (GeV’), g for each particle 

in each slice in 5. These parameters.are presented in Table III. 

It is evident that for low xR and small pL the largest invariant 

+ 
cross section is for P . Then n-, no, K+, K-, p and c respectively 

follow in order of decreasing magnitude. 10 
At large xR, the proton 

inclusive cross section dominates because of leading particle 

effects. 

The fit parameters m2 and g for mesons display an interesting 

similarity. The evident general trend of the parameter m2 is to 

grow from approximately, 0.3 GeV2/c4 at xR ?r 0.05 to roughly 

1.5 GeV2/c4 at x R 
= 0.55. This growth in m2 with increasing \ is 

an expression of the flattening at low pa of E do/dp' with increas- 

ing xR. The fit parameter g shows the general trend of growing 

for increasing xR from approximately 3 at small xR 3: 0.05 to 

roughly 6 at xR = 0.55. The m2 and g parameters from the fits 

to the p and 5 invariant cross section show this same behavior 

with increasing xR. However In2 for protons and anti-protons grows 

: 
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from z 1.0 at XR 'I 0.05 to Ir 2.0 at x R '2 0.55 and is therefore 

generally larger than the value of in2 for mesons. The parameter 

q for protons and anti-protons is also different from mesons: q 

increases from roughly 4 at xR " 0.05 to 8 at xR ? 0.55 end is 

therefore systematically larger than the corresponding values 

for mesons. 

A check was made to insure that this general behavior of 

the parameters m2 and g is not a consequence of relative normal- 

ization errors among various experiments. A fit to only the I* 

data of D. C. Carey et al.,l showed the same general behavior. 

To verify that the trend is not due to an increasing pa range 

with increasing xR, additional fits were made with cuts in the 

pJ range to constrain it between 0.5 z p1 2 2.25 GeV/c for n+ 

and for pI I 2.25 GeV for no. The calculated parameters A, m2 

and g for this test were found to be consistent with the values 

from the unconstrained fits. 

It is interesting to note that in the limit as 5 + 0 (or 

equivalently, p1 fixed as & -t -1 the extrapolated form of the 

invariant cross section for mesons is consistent with: 

- 

lim Ek 2 - A (17) 

*Ft + 0 dP3 521 
PI 

This observed p,-dependence seems to exclude the constituent 

interchange modelllwhich predicts a l/pie behavior, and is 

closer to the l/pA4 dependence postulated by Berman, 

Bjorken and Kogut." Protons and anti-protons, however appear 

to be more consistent with the foxm: 
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lim 

xR -0 
0 

E;$ = 
A 

US) 

giving a PL dependence of 2 l/pi 8 
at large p*. 

B) The XR dependence of E do/dp3 for constant PI for various 

particles in the radial scaling region of & 2 10 GeV is shown in 

Figure 11. It is seen that the cross sections for all particles 

with the exception of protons at low PI, fall as xR * 1 for all 

Pl. To parameterize this XR dependence (for all particles except 

protons) we performed a minimum x2 fit of the invariant cross 

section to the theoretically motivated form: 4,ll 

+ z 

dp 
I 

B(1 - xRjn , (19) 

fixed p+ 

where B and n are free parameters. Reasonable fits were obtained 

in all cases. The resulting values of B (mb/GeV2) and n are 

tabulated in Table IV. The particles listed in rough order of 
+ 

increasing n, are (p), X+, 1 , II-, no, K-, p- TO check that these 

fits were independent of the xR interval, a cut in xR was made for 

the no data constraining 0.15 z XR I 0.35,and a minimum x2 fit was 

again performed. Within errors. the fit parameters were the same. 

The power of n for a fixed pl,in the preceding parameteriza- 

tion of E do 
3 I PI 

,reflects perhaps, the guantum number 
dp 

conservation requirements (charge, baryon number, strangeness etc.) 

in the production of particle c. 11 These requirements may be 

calculated from the exclusive limit of the invariant cross section, 
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since the undetected particles in the inclusive experiment must 

contain the same quantum numbers as the exclusive limit. 2 It 

appears that the more a given single particle inclusive reaction 

is forbidden (i.e., more quantum numbers to balance in the production 

of particle cl, the larger is the value of the exponent n. 

VI. SUMMARY 

We have parameterized the single particle inclusive produc- 

tion cross sections in terms of s , pI and the radial scaling 

variable xR: 

Edo- 
dp3 - 

f(S, PA, XR) , 

where xR = Be/E* max. 

We have found that above & 2 10 GeV, all of the cross section 

data are consistent with radial scaling for all p&r 

E da 
2 

= f (p,. XR) n 

6 L 10 GeV. 

Below & = 10 GeV and for XR < 0.2, there is a rapid approach to the 

scaling limit from above. For xR : 0.20. there is good radial 

scaling down to the threshold. 

Feynman scaling is achieved at a larger value of & where the 

suppression due to the presence of the kinematic boundary is auf- 

ficiently small. In the cases of large pl, (or even small pl for 

p‘and El, this s-dependence is still present even in the ISR 

energy range. 
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Parameterizing the single particle inclusive cross sections 

in terms of pi, xR and &. we find in the radial scaling region 

& < 10 GeV, that the shape of the pI dependence of E da/dp3 

for all particles for constant xR as a function of xR show the 

same general behavior. From the minimum x2 fits to the invariant 

cross section to the form: 

E do 

I 

A 
- = 
dp3 (1 + P12)q 

xR fixed ,'I 

we find: 

1) The parameter m2 grows with increasing xR for all 

particles and is generally larger for protons and anti-protons 

than for mesons. 

2) The parameter g grows with increasing xR for all Particles- 

3) The parameter A, which reflects the overall magnitude 

of the invariant cross section, decreases for increasing xR for 
+ - 0 + -- 

" , II , r , K, x , p. For protons,A increases with increasing 

=I?- 

4) In the limit of xR + 0, the invariant cross section for 

meson production is consistent with: 

and for protons and anti-protons (although the errors in the i; 

cross section are large) with the form: 



ltn 1 -m 

% -0 
PA8 

The shape as a function of xR of the single particle 

inclusive cross section for constant pL shows a very strong 

dependence on the species of the detected particle. In partic- 

Illa?, the more forbidden the production of the detected particle 

is, the steeper the slope of E - ::',I fixed versus xR. Parameter- 

itinq the invariant cross section f& fixed p1 in the form: 

Edo 
dp3p! fired = B(l - xRjn ' 

we find that: 

the parameter n for the various particles is given by 

+ 
the following increzsinq order: p, K+, x , *O , I-, X-. E. Only 

protons at low pL show an increasing E da/dp3 versus increasing 

xR for pi fixed. 

In conclusj,on,the most important result of this investigation 

is that all data for long lived particle production in proton- 

proton collisions exhibit radial scaling at all pl for V% c 

10 GeV. 

Expressing single particle inclusive cross sect~ions in terms 

of pL and xR allows a simple and systematic behavior to be revealed 

for particle production. 
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Figure Captions 

Fig. 1: The plot shows the lines in the center of momentum 

frame along which measurements are made to study scaling 

in the case of fixed Feynman (Fl variable x 
0 

, and fixed 

radial (R) variable xR. 

Fig. 2: The n+ invariant cross section E 
:* 

for constant XR or x,, 

and for various constant values of pL versus the center 

of momentum energy 6. The dotted line is to guide the 

aye through points of constant x,, and pL. The ~~0th 

line is the average value of E 
3 

for constant xR and 

p* for fz :. 10 GeV, and extends from the & threshold 

(calculated using Eq. 9, taking into account the finite 

bin widths in XR and pA) to fi = 70 GeV. The cases where 

,there was only one high pL data point were not plotted. 

=I XRcmX,, = 0.05 f 0.05 

b) xRorx,, - 0.25 ?. 0.05 

Cl XRcc x,, - 0.45 f 0.05 

dl xRor x,, = 0.65 f 0.05 

e) xRo= XII = 0.85 i 0.05 

Fig. 3: The n- invariant cross section E 
:* 

for constant XR or 

x,, and constant values of pI ve,rsus /i. 

=I XROrx 
Ii 

- 0.05 f 0.05 

b) x,0; x,, - 0.25 f 0.05 

C) 3t”= Xl, - 0.45 t 0.05 
I 

dl sor x,, - 0.65 9. 0.05 

Fig. 4: The m" invariant cross section E da 

de3 
- for constant XR Of 

x,~ and constant values of pz versus /;;. 

al XR"=X/j - 0.05 i 0.05 
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b) xRor x 
II = 0<25 ?. 0.05 

Cl XR"= x,, = 0.45 * 0.05 

d) xRor a,, = 0.65 t 0.05 

Fig. 5: , The K+ do znvariant cross section E - for constant 

xROr x 
dp3 

i, and constant values of pL versus 6. 

=I xRor x 
0 

= 0.05 f 0.05 

b) xROrx = 0.25 f 0.05 
II 

Cl xRor x 
11 

= 0.45 f 0.05 

dl xRor x,, = 0.65 f 0.05 
. . 

Fig. 6: The K- inVariZmt~cross se&ion E % for constant 
de 

aRorx,, and constant values of pL versus /i.~ 

=I XR Or 51 = 0.05 * 0.05 

b) xRorr ,I = 0.25 * 0.05 

Cl XR.xX,, = 0.45 t 0.05 

d) xRorx,, ,= 0.65 f 0.05 

Fig. 7: The proton invariant cross section E for constant 

aRor x1, 

.+ 

and constant values of pI versus &. 

=) XI, Or =,I = 0.05 f 0.05 

b) xRo= x,, = 0.25 f 0.05 

Cl xRo=x I, = 0.45 f 0.05 

d) xRo=x,, = 0.65 f 0.05 

el XRlxX,, = 0.85.f 0.05 

Fig. 8: The anti-proton. invariant cross section E for constant 

XRorx,8 and constant values of pL versus &‘. 
al XRcmX* - 0.05 f 0.05 

bl xR 0=x,, - 0.25 f 0.05 

Cl XRO=?, = 0.45 f 0.05 

d) xRorx,, = 0.65 f 0.05 



- 36 - 

Fig. 9: The normalized ?eyrou plot showing the kinematic region 

covered for each particle species in the data compilation. 

The forward-backward symmetry of p-p collisions was used. 

to map -Iy,I to +1x,,). The quarter circles are lines 

of various constant values x 
R' 

=I Normalized Peyrou plot for v+ 

b) Normalized Peyzou plot for v- 

Cl Normalized Peyrou plot for no 

d) Normalized Peyrou plot for K+ 

=I Normalized Peyrou plot for I(- 

f) Normalized Peyrou plot for p 

9) Normalized Peyrou plot for 5 

Fig. 10: The trrnsverse momentum dependence of the invariant cro.ss 

section E do 
dp3 

for various constant values of XR in the 

radial scaling region: & z 10 GeV. The solid lines are 

the function A - 9 where the values of A, m2, q are 

(1 + P*Y - 

P- 
given in Table III. 

a) *+ da Invariant cross section: E - 
dp3 

b) II- do invariant cross section: E - 
dp3 

<XR> 

<XR) 

C) no da -- Invariant cross section: E - 
dp 31 <XI)> 

d) x+ da .. invariant cross section: E - 
dp 31 en> _. 

e) - X invariant cross section: E 
>I CXR> 

f) P invariant cross section: 
E%I 

%zR' 
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91 P invariant cross section: 
E>l CXR) 

Fig. 11: The XB dependence of the invariant cross section 

E$3 for various constant values of pI in the radial 

scaling region: & c 10 GeV. The solid lines are the 

function B(1 - x,) n where B and n are determined from 

the minimum x2 fittoE%I , and are given in Table IV. 
dp= 1 <PI' 

a) n+ xnvariant cross section: E + 
dp 

b) T- invariant cross section: 

I <P;' 

I <PI' 

C) no da mvariant cross section: E - 
dp 31 <PI' 

d) K+ mvariant cross section: E%I 
dp CPA' 

e) X- do invariant cross section: E - 
dp 31 <PA> 

f) p invariant cross section: E 

The dotted line is to guide the eye, since no fit 

of the form B(1 - xRIn was performed. 

9) i; 
do invariant cross section: E - 
dp 31 <PI' 
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